Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility
نویسندگان
چکیده
In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization, including the CLASPs, a complex of CLIP-170, IQGAP1, activated Cdc42 or Rac1, a complex of APC, EB1, and mDia1, and the actin-MT crosslinking factor ACF7. By using mouse embryonic fibroblasts (MEFs) in a wound-healing assay, we show here that CLASP2 is required for the formation of a stable, polarized MT array but that CLIP-170 and an APC-EB1 interaction are not essential. Persistent motility is also hampered in CLASP2-deficient MEFs. We find that ACF7 regulates cortical CLASP localization in HeLa cells, indicating it acts upstream of CLASP2. Fluorescence-based approaches show that GFP-CLASP2 is immobilized in a bimodal manner in regions near cell edges. Our results suggest that the regional immobilization of CLASP2 allows MT stabilization and promotes directionally persistent motility in fibroblasts.
منابع مشابه
Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function.
Microtubule organization and dynamics are essential during axon and dendrite formation and maintenance in neurons. However, little is known about the regulation of microtubule dynamics during synaptic development and function in mammalian neurons. Here, we present evidence that the microtubule plus-end tracking protein CLASP2 (cytoplasmic linker associated protein 2) is a key regulator of axon ...
متن کاملO-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملI-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells.
Microtubules (MTs) contribute to key processes during cell motility, including the regulation of focal adhesion turnover and the establishment and maintenance of cell orientation. It was previously demonstrated that the ErbB2 receptor tyrosine kinase regulated MT outgrowth to the cell cortex via a complex including Memo, the GTPase RhoA, and the formin mDia1. But the mechanism that linked this ...
متن کاملMicrotubule dynamics regulation contributes to endothelial morphogenesis
Because little is known how microtubules contribute to cell migration in a physiological three-dimensional environment, we analyzed microtubule function and dynamics during in vitro angiogenesis in which endothelial cells form networks on a reconstituted basement membrane. Endothelial network formation resulted from distinct cell behaviors: matrix reorganization by myosin-mediated contractile f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006